Analytical formulas for calculating extremal ranks and inertias of quadratic matrix-valued functions and their applications

نویسنده

  • Yongge Tian
چکیده

A group of analytical formulas formulas for calculating the global maximal and minimal ranks and inertias of the quadratic matrix-valued function φ(X) = (AXB + C )M(AXB + C) +D are established and their consequences are presented, where A, B, C and D are given complex matrices with A and C Hermitian. As applications, necessary and sufficient conditions for the two general quadratic matrix-valued functions ( k ∑ i=1 AiXiBi + C ) M ( k ∑ i=1 AiXiBi + C )∗ +D, k ∑ i=1 (AiXiBi + Ci )Mi(AiXiBi + Ci ) ∗ +D to be semi-definite are derived, respectively, where Ai, Bi, Ci, C, D, Mi and M are given matrices with Mi, M and D Hermitian, i = 1, . . . , k. Löwner partial ordering optimizations of the two matrix-valued functions are studied and their solutions are characterized. Mathematics Subject Classifications: 15A24; 15A63; 15B57; 65K10; 90C20; 90C22

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical formulas for calculating the extremal ranks and inertias of A + BXB∗ when X is a fixed-rank Hermitian matrix

The rank of a matrix and the inertia of a square matrix are two of the most generic concepts in matrix theory for describing the dimension of the row/column vector space and the sign distribution of the eigenvalues of the matrix. Matrix rank and inertia optimization problems are a class of discontinuous optimization problems, in which decision variables are matrices running over certain matrix ...

متن کامل

Analytical formulas for calculating the extremal ranks of the matrix-valued function A +BXC when the rank of X is fixed

Analytical formulas are established for calculating the maximal and minimal ranks of the matrix-valued function A+BXC when the rank of X is fixed. Some consequences are also given.

متن کامل

Formulas for calculating the maximum and minimum ranks of products of generalized inverses of matrices

Abstract. A matrix X is called an {i, . . . , j}-inverse of A, denoted by A, if it satisfies the ith,. . . , jth equations of the four matrix equations (i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA. The {i, . . . , j}-inverse of A is not necessarily unique and their general expressions can be written as certain linear or quadratical matrix-valued functions that involve one or mor...

متن کامل

Optimization problems on the rank and inertia of the Hermitian matrix expression A−BX − (BX)∗ with applications

We give in this paper some closed-form formulas for the maximal and minimal values of the rank and inertia of the Hermitian matrix expression A − BX ± (BX)∗ with respect to a variable matrix X. As applications, we derive the extremal values of the ranks/inertias of the matrices X and X ± X∗, where X is a (Hermitian) solution to the matrix equation AXB = C, respectively, and give necessary and s...

متن کامل

Matrix rank/inertia formulas for least-squares solutions with statistical applications

Least-Squares Solution (LSS) of a linear matrix equation and Ordinary Least-Squares Estimator (OLSE) of unknown parameters in a general linear model are two standard algebraical methods in computational mathematics and regression analysis. Assume that a symmetric quadratic matrix-valued function φ(Z) = Q − ZPZ′ is given, where Z is taken as the LSS of the linear matrix equation AZ = B. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012